Skip to content

pydantic_ai.mcp

MCPServer

Bases: AbstractToolset[Any], ABC

Base class for attaching agents to MCP servers.

See https://modelcontextprotocol.io for more information.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
class MCPServer(AbstractToolset[Any], ABC):
    """Base class for attaching agents to MCP servers.

    See <https://modelcontextprotocol.io> for more information.
    """

    # these fields should be re-defined by dataclass subclasses so they appear as fields {
    tool_prefix: str | None = None
    log_level: mcp_types.LoggingLevel | None = None
    log_handler: LoggingFnT | None = None
    timeout: float = 5
    read_timeout: float = 5 * 60
    process_tool_call: ProcessToolCallback | None = None
    allow_sampling: bool = True
    sampling_model: models.Model | None = None
    max_retries: int = 1
    # } end of "abstract fields"

    _id: str | None = field(init=False, default=None)

    _enter_lock: Lock = field(compare=False)
    _running_count: int
    _exit_stack: AsyncExitStack | None

    _client: ClientSession
    _read_stream: MemoryObjectReceiveStream[SessionMessage | Exception]
    _write_stream: MemoryObjectSendStream[SessionMessage]

    def __init__(
        self,
        tool_prefix: str | None = None,
        log_level: mcp_types.LoggingLevel | None = None,
        log_handler: LoggingFnT | None = None,
        timeout: float = 5,
        read_timeout: float = 5 * 60,
        process_tool_call: ProcessToolCallback | None = None,
        allow_sampling: bool = True,
        sampling_model: models.Model | None = None,
        max_retries: int = 1,
        id: str | None = None,
    ):
        self.tool_prefix = tool_prefix
        self.log_level = log_level
        self.log_handler = log_handler
        self.timeout = timeout
        self.read_timeout = read_timeout
        self.process_tool_call = process_tool_call
        self.allow_sampling = allow_sampling
        self.sampling_model = sampling_model
        self.max_retries = max_retries

        self._id = id or tool_prefix

        self._enter_lock = Lock()
        self._running_count = 0
        self._exit_stack = None

    @abstractmethod
    @asynccontextmanager
    async def client_streams(
        self,
    ) -> AsyncIterator[
        tuple[
            MemoryObjectReceiveStream[SessionMessage | Exception],
            MemoryObjectSendStream[SessionMessage],
        ]
    ]:
        """Create the streams for the MCP server."""
        raise NotImplementedError('MCP Server subclasses must implement this method.')
        yield

    @property
    def id(self) -> str | None:
        return self._id

    @property
    def label(self) -> str:
        return repr(self)

    @property
    def tool_name_conflict_hint(self) -> str:
        return 'Set the `tool_prefix` attribute to avoid name conflicts.'

    async def list_tools(self) -> list[mcp_types.Tool]:
        """Retrieve tools that are currently active on the server.

        Note:
        - We don't cache tools as they might change.
        - We also don't subscribe to the server to avoid complexity.
        """
        async with self:  # Ensure server is running
            result = await self._client.list_tools()
        return result.tools

    async def direct_call_tool(
        self,
        name: str,
        args: dict[str, Any],
        metadata: dict[str, Any] | None = None,
    ) -> ToolResult:
        """Call a tool on the server.

        Args:
            name: The name of the tool to call.
            args: The arguments to pass to the tool.
            metadata: Request-level metadata (optional)

        Returns:
            The result of the tool call.

        Raises:
            ModelRetry: If the tool call fails.
        """
        async with self:  # Ensure server is running
            try:
                result = await self._client.send_request(
                    mcp_types.ClientRequest(
                        mcp_types.CallToolRequest(
                            method='tools/call',
                            params=mcp_types.CallToolRequestParams(
                                name=name,
                                arguments=args,
                                _meta=mcp_types.RequestParams.Meta(**metadata) if metadata else None,
                            ),
                        )
                    ),
                    mcp_types.CallToolResult,
                )
            except McpError as e:
                raise exceptions.ModelRetry(e.error.message)

        content = [await self._map_tool_result_part(part) for part in result.content]

        if result.isError:
            text = '\n'.join(str(part) for part in content)
            raise exceptions.ModelRetry(text)
        else:
            return content[0] if len(content) == 1 else content

    async def call_tool(
        self,
        name: str,
        tool_args: dict[str, Any],
        ctx: RunContext[Any],
        tool: ToolsetTool[Any],
    ) -> ToolResult:
        if self.tool_prefix:
            name = name.removeprefix(f'{self.tool_prefix}_')
            ctx = replace(ctx, tool_name=name)

        if self.process_tool_call is not None:
            return await self.process_tool_call(ctx, self.direct_call_tool, name, tool_args)
        else:
            return await self.direct_call_tool(name, tool_args)

    async def get_tools(self, ctx: RunContext[Any]) -> dict[str, ToolsetTool[Any]]:
        return {
            name: ToolsetTool(
                toolset=self,
                tool_def=ToolDefinition(
                    name=name,
                    description=mcp_tool.description,
                    parameters_json_schema=mcp_tool.inputSchema,
                ),
                max_retries=self.max_retries,
                args_validator=TOOL_SCHEMA_VALIDATOR,
            )
            for mcp_tool in await self.list_tools()
            if (name := f'{self.tool_prefix}_{mcp_tool.name}' if self.tool_prefix else mcp_tool.name)
        }

    async def __aenter__(self) -> Self:
        """Enter the MCP server context.

        This will initialize the connection to the server.
        If this server is an [`MCPServerStdio`][pydantic_ai.mcp.MCPServerStdio], the server will first be started as a subprocess.

        This is a no-op if the MCP server has already been entered.
        """
        async with self._enter_lock:
            if self._running_count == 0:
                self._exit_stack = AsyncExitStack()

                self._read_stream, self._write_stream = await self._exit_stack.enter_async_context(
                    self.client_streams()
                )
                client = ClientSession(
                    read_stream=self._read_stream,
                    write_stream=self._write_stream,
                    sampling_callback=self._sampling_callback if self.allow_sampling else None,
                    logging_callback=self.log_handler,
                    read_timeout_seconds=timedelta(seconds=self.read_timeout),
                )
                self._client = await self._exit_stack.enter_async_context(client)

                with anyio.fail_after(self.timeout):
                    await self._client.initialize()

                    if log_level := self.log_level:
                        await self._client.set_logging_level(log_level)
            self._running_count += 1
        return self

    async def __aexit__(self, *args: Any) -> bool | None:
        async with self._enter_lock:
            self._running_count -= 1
            if self._running_count == 0 and self._exit_stack is not None:
                await self._exit_stack.aclose()
                self._exit_stack = None

    @property
    def is_running(self) -> bool:
        """Check if the MCP server is running."""
        return bool(self._running_count)

    async def _sampling_callback(
        self, context: RequestContext[ClientSession, Any], params: mcp_types.CreateMessageRequestParams
    ) -> mcp_types.CreateMessageResult | mcp_types.ErrorData:
        """MCP sampling callback."""
        if self.sampling_model is None:
            raise ValueError('Sampling model is not set')  # pragma: no cover

        pai_messages = _mcp.map_from_mcp_params(params)
        model_settings = models.ModelSettings()
        if max_tokens := params.maxTokens:  # pragma: no branch
            model_settings['max_tokens'] = max_tokens
        if temperature := params.temperature:  # pragma: no branch
            model_settings['temperature'] = temperature
        if stop_sequences := params.stopSequences:  # pragma: no branch
            model_settings['stop_sequences'] = stop_sequences

        model_response = await self.sampling_model.request(
            pai_messages,
            model_settings,
            models.ModelRequestParameters(),
        )
        return mcp_types.CreateMessageResult(
            role='assistant',
            content=_mcp.map_from_model_response(model_response),
            model=self.sampling_model.model_name,
        )

    async def _map_tool_result_part(
        self, part: mcp_types.ContentBlock
    ) -> str | messages.BinaryContent | dict[str, Any] | list[Any]:
        # See https://github.com/jlowin/fastmcp/blob/main/docs/servers/tools.mdx#return-values

        if isinstance(part, mcp_types.TextContent):
            text = part.text
            if text.startswith(('[', '{')):
                try:
                    return pydantic_core.from_json(text)
                except ValueError:
                    pass
            return text
        elif isinstance(part, mcp_types.ImageContent):
            return messages.BinaryContent(data=base64.b64decode(part.data), media_type=part.mimeType)
        elif isinstance(part, mcp_types.AudioContent):
            # NOTE: The FastMCP server doesn't support audio content.
            # See <https://github.com/modelcontextprotocol/python-sdk/issues/952> for more details.
            return messages.BinaryContent(
                data=base64.b64decode(part.data), media_type=part.mimeType
            )  # pragma: no cover
        elif isinstance(part, mcp_types.EmbeddedResource):
            resource = part.resource
            return self._get_content(resource)
        elif isinstance(part, mcp_types.ResourceLink):
            resource_result: mcp_types.ReadResourceResult = await self._client.read_resource(part.uri)
            return (
                self._get_content(resource_result.contents[0])
                if len(resource_result.contents) == 1
                else [self._get_content(resource) for resource in resource_result.contents]
            )
        else:
            assert_never(part)

    def _get_content(
        self, resource: mcp_types.TextResourceContents | mcp_types.BlobResourceContents
    ) -> str | messages.BinaryContent:
        if isinstance(resource, mcp_types.TextResourceContents):
            return resource.text
        elif isinstance(resource, mcp_types.BlobResourceContents):
            return messages.BinaryContent(
                data=base64.b64decode(resource.blob), media_type=resource.mimeType or 'application/octet-stream'
            )
        else:
            assert_never(resource)

client_streams abstractmethod async

client_streams() -> AsyncIterator[
    tuple[
        MemoryObjectReceiveStream[
            SessionMessage | Exception
        ],
        MemoryObjectSendStream[SessionMessage],
    ]
]

Create the streams for the MCP server.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
110
111
112
113
114
115
116
117
118
119
120
121
122
@abstractmethod
@asynccontextmanager
async def client_streams(
    self,
) -> AsyncIterator[
    tuple[
        MemoryObjectReceiveStream[SessionMessage | Exception],
        MemoryObjectSendStream[SessionMessage],
    ]
]:
    """Create the streams for the MCP server."""
    raise NotImplementedError('MCP Server subclasses must implement this method.')
    yield

list_tools async

list_tools() -> list[Tool]

Retrieve tools that are currently active on the server.

Note: - We don't cache tools as they might change. - We also don't subscribe to the server to avoid complexity.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
136
137
138
139
140
141
142
143
144
145
async def list_tools(self) -> list[mcp_types.Tool]:
    """Retrieve tools that are currently active on the server.

    Note:
    - We don't cache tools as they might change.
    - We also don't subscribe to the server to avoid complexity.
    """
    async with self:  # Ensure server is running
        result = await self._client.list_tools()
    return result.tools

direct_call_tool async

direct_call_tool(
    name: str,
    args: dict[str, Any],
    metadata: dict[str, Any] | None = None,
) -> ToolResult

Call a tool on the server.

Parameters:

Name Type Description Default
name str

The name of the tool to call.

required
args dict[str, Any]

The arguments to pass to the tool.

required
metadata dict[str, Any] | None

Request-level metadata (optional)

None

Returns:

Type Description
ToolResult

The result of the tool call.

Raises:

Type Description
ModelRetry

If the tool call fails.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
async def direct_call_tool(
    self,
    name: str,
    args: dict[str, Any],
    metadata: dict[str, Any] | None = None,
) -> ToolResult:
    """Call a tool on the server.

    Args:
        name: The name of the tool to call.
        args: The arguments to pass to the tool.
        metadata: Request-level metadata (optional)

    Returns:
        The result of the tool call.

    Raises:
        ModelRetry: If the tool call fails.
    """
    async with self:  # Ensure server is running
        try:
            result = await self._client.send_request(
                mcp_types.ClientRequest(
                    mcp_types.CallToolRequest(
                        method='tools/call',
                        params=mcp_types.CallToolRequestParams(
                            name=name,
                            arguments=args,
                            _meta=mcp_types.RequestParams.Meta(**metadata) if metadata else None,
                        ),
                    )
                ),
                mcp_types.CallToolResult,
            )
        except McpError as e:
            raise exceptions.ModelRetry(e.error.message)

    content = [await self._map_tool_result_part(part) for part in result.content]

    if result.isError:
        text = '\n'.join(str(part) for part in content)
        raise exceptions.ModelRetry(text)
    else:
        return content[0] if len(content) == 1 else content

__aenter__ async

__aenter__() -> Self

Enter the MCP server context.

This will initialize the connection to the server. If this server is an MCPServerStdio, the server will first be started as a subprocess.

This is a no-op if the MCP server has already been entered.

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
async def __aenter__(self) -> Self:
    """Enter the MCP server context.

    This will initialize the connection to the server.
    If this server is an [`MCPServerStdio`][pydantic_ai.mcp.MCPServerStdio], the server will first be started as a subprocess.

    This is a no-op if the MCP server has already been entered.
    """
    async with self._enter_lock:
        if self._running_count == 0:
            self._exit_stack = AsyncExitStack()

            self._read_stream, self._write_stream = await self._exit_stack.enter_async_context(
                self.client_streams()
            )
            client = ClientSession(
                read_stream=self._read_stream,
                write_stream=self._write_stream,
                sampling_callback=self._sampling_callback if self.allow_sampling else None,
                logging_callback=self.log_handler,
                read_timeout_seconds=timedelta(seconds=self.read_timeout),
            )
            self._client = await self._exit_stack.enter_async_context(client)

            with anyio.fail_after(self.timeout):
                await self._client.initialize()

                if log_level := self.log_level:
                    await self._client.set_logging_level(log_level)
        self._running_count += 1
    return self

is_running property

is_running: bool

Check if the MCP server is running.

MCPServerStdio dataclass

Bases: MCPServer

Runs an MCP server in a subprocess and communicates with it over stdin/stdout.

This class implements the stdio transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#stdio for more information.

Note

Using this class as an async context manager will start the server as a subprocess when entering the context, and stop it when exiting the context.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStdio

server = MCPServerStdio(  # (1)!
    'deno',
    args=[
        'run',
        '-N',
        '-R=node_modules',
        '-W=node_modules',
        '--node-modules-dir=auto',
        'jsr:@pydantic/mcp-run-python',
        'stdio',
    ]
)
agent = Agent('openai:gpt-4o', toolsets=[server])

async def main():
    async with agent:  # (2)!
        ...

  1. See MCP Run Python for more information.
  2. This will start the server as a subprocess and connect to it.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
@dataclass(init=False)
class MCPServerStdio(MCPServer):
    """Runs an MCP server in a subprocess and communicates with it over stdin/stdout.

    This class implements the stdio transport from the MCP specification.
    See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#stdio> for more information.

    !!! note
        Using this class as an async context manager will start the server as a subprocess when entering the context,
        and stop it when exiting the context.

    Example:
    ```python {py="3.10"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerStdio

    server = MCPServerStdio(  # (1)!
        'deno',
        args=[
            'run',
            '-N',
            '-R=node_modules',
            '-W=node_modules',
            '--node-modules-dir=auto',
            'jsr:@pydantic/mcp-run-python',
            'stdio',
        ]
    )
    agent = Agent('openai:gpt-4o', toolsets=[server])

    async def main():
        async with agent:  # (2)!
            ...
    ```

    1. See [MCP Run Python](../mcp/run-python.md) for more information.
    2. This will start the server as a subprocess and connect to it.
    """

    command: str
    """The command to run."""

    args: Sequence[str]
    """The arguments to pass to the command."""

    env: dict[str, str] | None = None
    """The environment variables the CLI server will have access to.

    By default the subprocess will not inherit any environment variables from the parent process.
    If you want to inherit the environment variables from the parent process, use `env=os.environ`.
    """

    cwd: str | Path | None = None
    """The working directory to use when spawning the process."""

    # last fields are re-defined from the parent class so they appear as fields
    tool_prefix: str | None = None
    """A prefix to add to all tools that are registered with the server.

    If not empty, will include a trailing underscore(`_`).

    e.g. if `tool_prefix='foo'`, then a tool named `bar` will be registered as `foo_bar`
    """

    log_level: mcp_types.LoggingLevel | None = None
    """The log level to set when connecting to the server, if any.

    See <https://modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging#logging> for more details.

    If `None`, no log level will be set.
    """

    log_handler: LoggingFnT | None = None
    """A handler for logging messages from the server."""

    timeout: float = 5
    """The timeout in seconds to wait for the client to initialize."""

    read_timeout: float = 5 * 60
    """Maximum time in seconds to wait for new messages before timing out.

    This timeout applies to the long-lived connection after it's established.
    If no new messages are received within this time, the connection will be considered stale
    and may be closed. Defaults to 5 minutes (300 seconds).
    """

    process_tool_call: ProcessToolCallback | None = None
    """Hook to customize tool calling and optionally pass extra metadata."""

    allow_sampling: bool = True
    """Whether to allow MCP sampling through this client."""

    sampling_model: models.Model | None = None
    """The model to use for sampling."""

    max_retries: int = 1
    """The maximum number of times to retry a tool call."""

    def __init__(
        self,
        command: str,
        args: Sequence[str],
        env: dict[str, str] | None = None,
        cwd: str | Path | None = None,
        id: str | None = None,
        tool_prefix: str | None = None,
        log_level: mcp_types.LoggingLevel | None = None,
        log_handler: LoggingFnT | None = None,
        timeout: float = 5,
        read_timeout: float = 5 * 60,
        process_tool_call: ProcessToolCallback | None = None,
        allow_sampling: bool = True,
        sampling_model: models.Model | None = None,
        max_retries: int = 1,
    ):
        """Build a new MCP server.

        Args:
            command: The command to run.
            args: The arguments to pass to the command.
            env: The environment variables to set in the subprocess.
            cwd: The working directory to use when spawning the process.
            id: An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.
            tool_prefix: A prefix to add to all tools that are registered with the server.
            log_level: The log level to set when connecting to the server, if any.
            log_handler: A handler for logging messages from the server.
            timeout: The timeout in seconds to wait for the client to initialize.
            read_timeout: Maximum time in seconds to wait for new messages before timing out.
            process_tool_call: Hook to customize tool calling and optionally pass extra metadata.
            allow_sampling: Whether to allow MCP sampling through this client.
            sampling_model: The model to use for sampling.
            max_retries: The maximum number of times to retry a tool call.
        """
        self.command = command
        self.args = args
        self.env = env
        self.cwd = cwd

        super().__init__(
            tool_prefix,
            log_level,
            log_handler,
            timeout,
            read_timeout,
            process_tool_call,
            allow_sampling,
            sampling_model,
            max_retries,
            id,
        )

    @asynccontextmanager
    async def client_streams(
        self,
    ) -> AsyncIterator[
        tuple[
            MemoryObjectReceiveStream[SessionMessage | Exception],
            MemoryObjectSendStream[SessionMessage],
        ]
    ]:
        server = StdioServerParameters(command=self.command, args=list(self.args), env=self.env, cwd=self.cwd)
        async with stdio_client(server=server) as (read_stream, write_stream):
            yield read_stream, write_stream

    def __repr__(self) -> str:
        if self.id:
            return f'{self.__class__.__name__} {self.id!r}'
        else:
            return f'{self.__class__.__name__}(command={self.command!r}, args={self.args!r})'

tool_prefix class-attribute instance-attribute

tool_prefix: str | None = None

A prefix to add to all tools that are registered with the server.

If not empty, will include a trailing underscore(_).

e.g. if tool_prefix='foo', then a tool named bar will be registered as foo_bar

log_level class-attribute instance-attribute

log_level: LoggingLevel | None = None

The log level to set when connecting to the server, if any.

See https://modelcontextprotocol.io/specification/2025-03-26/server/utilities/logging#logging for more details.

If None, no log level will be set.

log_handler class-attribute instance-attribute

log_handler: LoggingFnT | None = None

A handler for logging messages from the server.

timeout class-attribute instance-attribute

timeout: float = 5

The timeout in seconds to wait for the client to initialize.

read_timeout class-attribute instance-attribute

read_timeout: float = 5 * 60

Maximum time in seconds to wait for new messages before timing out.

This timeout applies to the long-lived connection after it's established. If no new messages are received within this time, the connection will be considered stale and may be closed. Defaults to 5 minutes (300 seconds).

process_tool_call class-attribute instance-attribute

process_tool_call: ProcessToolCallback | None = None

Hook to customize tool calling and optionally pass extra metadata.

allow_sampling class-attribute instance-attribute

allow_sampling: bool = True

Whether to allow MCP sampling through this client.

sampling_model class-attribute instance-attribute

sampling_model: Model | None = None

The model to use for sampling.

max_retries class-attribute instance-attribute

max_retries: int = 1

The maximum number of times to retry a tool call.

__init__

__init__(
    command: str,
    args: Sequence[str],
    env: dict[str, str] | None = None,
    cwd: str | Path | None = None,
    id: str | None = None,
    tool_prefix: str | None = None,
    log_level: LoggingLevel | None = None,
    log_handler: LoggingFnT | None = None,
    timeout: float = 5,
    read_timeout: float = 5 * 60,
    process_tool_call: ProcessToolCallback | None = None,
    allow_sampling: bool = True,
    sampling_model: Model | None = None,
    max_retries: int = 1,
)

Build a new MCP server.

Parameters:

Name Type Description Default
command str

The command to run.

required
args Sequence[str]

The arguments to pass to the command.

required
env dict[str, str] | None

The environment variables to set in the subprocess.

None
cwd str | Path | None

The working directory to use when spawning the process.

None
id str | None

An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.

None
tool_prefix str | None

A prefix to add to all tools that are registered with the server.

None
log_level LoggingLevel | None

The log level to set when connecting to the server, if any.

None
log_handler LoggingFnT | None

A handler for logging messages from the server.

None
timeout float

The timeout in seconds to wait for the client to initialize.

5
read_timeout float

Maximum time in seconds to wait for new messages before timing out.

5 * 60
process_tool_call ProcessToolCallback | None

Hook to customize tool calling and optionally pass extra metadata.

None
allow_sampling bool

Whether to allow MCP sampling through this client.

True
sampling_model Model | None

The model to use for sampling.

None
max_retries int

The maximum number of times to retry a tool call.

1
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
def __init__(
    self,
    command: str,
    args: Sequence[str],
    env: dict[str, str] | None = None,
    cwd: str | Path | None = None,
    id: str | None = None,
    tool_prefix: str | None = None,
    log_level: mcp_types.LoggingLevel | None = None,
    log_handler: LoggingFnT | None = None,
    timeout: float = 5,
    read_timeout: float = 5 * 60,
    process_tool_call: ProcessToolCallback | None = None,
    allow_sampling: bool = True,
    sampling_model: models.Model | None = None,
    max_retries: int = 1,
):
    """Build a new MCP server.

    Args:
        command: The command to run.
        args: The arguments to pass to the command.
        env: The environment variables to set in the subprocess.
        cwd: The working directory to use when spawning the process.
        id: An optional unique ID for the MCP server. An MCP server needs to have an ID in order to be used in a durable execution environment like Temporal, in which case the ID will be used to identify the server's activities within the workflow.
        tool_prefix: A prefix to add to all tools that are registered with the server.
        log_level: The log level to set when connecting to the server, if any.
        log_handler: A handler for logging messages from the server.
        timeout: The timeout in seconds to wait for the client to initialize.
        read_timeout: Maximum time in seconds to wait for new messages before timing out.
        process_tool_call: Hook to customize tool calling and optionally pass extra metadata.
        allow_sampling: Whether to allow MCP sampling through this client.
        sampling_model: The model to use for sampling.
        max_retries: The maximum number of times to retry a tool call.
    """
    self.command = command
    self.args = args
    self.env = env
    self.cwd = cwd

    super().__init__(
        tool_prefix,
        log_level,
        log_handler,
        timeout,
        read_timeout,
        process_tool_call,
        allow_sampling,
        sampling_model,
        max_retries,
        id,
    )

command instance-attribute

command: str = command

The command to run.

args instance-attribute

args: Sequence[str] = args

The arguments to pass to the command.

env class-attribute instance-attribute

env: dict[str, str] | None = env

The environment variables the CLI server will have access to.

By default the subprocess will not inherit any environment variables from the parent process. If you want to inherit the environment variables from the parent process, use env=os.environ.

cwd class-attribute instance-attribute

cwd: str | Path | None = cwd

The working directory to use when spawning the process.

MCPServerSSE dataclass

Bases: _MCPServerHTTP

An MCP server that connects over streamable HTTP connections.

This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerSSE

server = MCPServerSSE('http://localhost:3001/sse')  # (1)!
agent = Agent('openai:gpt-4o', toolsets=[server])

async def main():
    async with agent:  # (2)!
        ...

  1. E.g. you might be connecting to a server run with mcp-run-python.
  2. This will connect to a server running on localhost:3001.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
@dataclass(init=False)
class MCPServerSSE(_MCPServerHTTP):
    """An MCP server that connects over streamable HTTP connections.

    This class implements the SSE transport from the MCP specification.
    See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse> for more information.

    !!! note
        Using this class as an async context manager will create a new pool of HTTP connections to connect
        to a server which should already be running.

    Example:
    ```python {py="3.10"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerSSE

    server = MCPServerSSE('http://localhost:3001/sse')  # (1)!
    agent = Agent('openai:gpt-4o', toolsets=[server])

    async def main():
        async with agent:  # (2)!
            ...
    ```

    1. E.g. you might be connecting to a server run with [`mcp-run-python`](../mcp/run-python.md).
    2. This will connect to a server running on `localhost:3001`.
    """

    @property
    def _transport_client(self):
        return sse_client  # pragma: no cover

MCPServerHTTP dataclass

Bases: MCPServerSSE

An MCP server that connects over HTTP using the old SSE transport.

This class implements the SSE transport from the MCP specification. See https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerHTTP

server = MCPServerHTTP('http://localhost:3001/sse')  # (1)!
agent = Agent('openai:gpt-4o', toolsets=[server])

async def main():
    async with agent:  # (2)!
        ...

  1. E.g. you might be connecting to a server run with mcp-run-python.
  2. This will connect to a server running on localhost:3001.
Source code in pydantic_ai_slim/pydantic_ai/mcp.py
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
@deprecated('The `MCPServerHTTP` class is deprecated, use `MCPServerSSE` instead.')
@dataclass
class MCPServerHTTP(MCPServerSSE):
    """An MCP server that connects over HTTP using the old SSE transport.

    This class implements the SSE transport from the MCP specification.
    See <https://spec.modelcontextprotocol.io/specification/2024-11-05/basic/transports/#http-with-sse> for more information.

    !!! note
        Using this class as an async context manager will create a new pool of HTTP connections to connect
        to a server which should already be running.

    Example:
    ```python {py="3.10" test="skip"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerHTTP

    server = MCPServerHTTP('http://localhost:3001/sse')  # (1)!
    agent = Agent('openai:gpt-4o', toolsets=[server])

    async def main():
        async with agent:  # (2)!
            ...
    ```

    1. E.g. you might be connecting to a server run with [`mcp-run-python`](../mcp/run-python.md).
    2. This will connect to a server running on `localhost:3001`.
    """

MCPServerStreamableHTTP dataclass

Bases: _MCPServerHTTP

An MCP server that connects over HTTP using the Streamable HTTP transport.

This class implements the Streamable HTTP transport from the MCP specification. See https://modelcontextprotocol.io/introduction#streamable-http for more information.

Note

Using this class as an async context manager will create a new pool of HTTP connections to connect to a server which should already be running.

Example:

from pydantic_ai import Agent
from pydantic_ai.mcp import MCPServerStreamableHTTP

server = MCPServerStreamableHTTP('http://localhost:8000/mcp')  # (1)!
agent = Agent('openai:gpt-4o', toolsets=[server])

async def main():
    async with agent:  # (2)!
        ...

Source code in pydantic_ai_slim/pydantic_ai/mcp.py
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
@dataclass
class MCPServerStreamableHTTP(_MCPServerHTTP):
    """An MCP server that connects over HTTP using the Streamable HTTP transport.

    This class implements the Streamable HTTP transport from the MCP specification.
    See <https://modelcontextprotocol.io/introduction#streamable-http> for more information.

    !!! note
        Using this class as an async context manager will create a new pool of HTTP connections to connect
        to a server which should already be running.

    Example:
    ```python {py="3.10"}
    from pydantic_ai import Agent
    from pydantic_ai.mcp import MCPServerStreamableHTTP

    server = MCPServerStreamableHTTP('http://localhost:8000/mcp')  # (1)!
    agent = Agent('openai:gpt-4o', toolsets=[server])

    async def main():
        async with agent:  # (2)!
            ...
    ```
    """

    @property
    def _transport_client(self):
        return streamablehttp_client  # pragma: no cover